skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Minsu Chen, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wang, Huan (Ed.)
    Defect identification has been a significant task in various fields to prevent the potential problems caused by imperfection. There is great attention for developing technology to accurately extract defect information from the image using a computing system without human error. However, image analysis using conventional computing technology based on Von Neumann structure is facing bottlenecks to efficiently process the huge volume of input data at low power and high speed. Herein efficient defect identification is demonstrated via a morphological image process with minimal power consumption using an oxide transistor and a memristor‐based crossbar array that can be applied to neuromorphic computing. Using a hardware and software codesigned neuromorphic system combined with a dynamic Gaussian blur kernel operation, an enhanced defect detection performance is successfully demonstrated with about 104 times more power‐efficient computation compared to the conventional complementary metal‐oxide semiconductor (CMOS)‐based digital implementation. It is believed the back end of line (BEOL)‐compatible all‐oxide‐based memristive crossbar array provides the unique potential toward universal artificial intelligence of things (AIoT) applications where conventional hardware can hardly be used. 
    more » « less